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SUMMARY 

This paper reports on the outcome of a workshop of the IAHR Working Group on Refined Modelling of 
Flows on the subject of computing laminar flows in complex geometries. Flow inside a channel with a smooth 
expansion was chosen by the organizers of the workshop as a suitable test case for assessing the capabilities of 
current numerical methods. The results obtained by fifteen participant groups are presented and compared 
against a suitable benchmark solution. The most important considerations that emerged at the workshop are 
briefly reported and the conclusions arising from an analysis and comparison of the various solutions are 
finally provided. 
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INTRODUCTION 

The continuous and sustained growth in computer speed and memory, as well as the improvements 
in the accuracy and efficiency of algorithms for solving partial differential equations, have allowed 
many researchers to attempt to compute flows of practical interest. Most applications involve 
‘complex geometries’, namely domains whose boundaries do not coincide with co-ordinate lines of 
a Cartesian or any other simple co-ordinate system. 

Two methodologies are employed most commonly in computational fluid dynamics (CFD), 
namely finite differences and finite elements. With regard to the specific task of computing flows in 
complex geometries, the finite element method appears as the most natural tool, owing to its 
intrinsic geometric flexibility. However, the finite difference method takes more and more 
advantage of co-ordinate transformations and grid generation techniques to exploit its superior 
simplicity and efficiency. Actually, both methodologies have their own merits and deficiencies, so 
that nothing definite can be said of the superiority of either. 

In order to stimulate a fruitful debate among CFD specialists and to assess the capabilities of 
various numerical methods to deal with laminar flows in complex geometries, the International 
Association for Hydraulic Research (IAHR) Working Group on Refined Modelling of Flows 
decided to devote its Fifth Meeting to this specific subject. 

The Working Group, aware that more conclusive answers can be drawn from testing different 
methods on a single well defined problem, also decided to devote a special workshop to the 
comparison and discussion of the solutions of a test case. 
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A previous meeting on the numerical treatment of advection’ had shown that in advection 
dominated problems the accuracy of numerical schemes is extremely sensitive to the discretization 
of the advection term. Therefore, a test case was chosen in which the numerical treatment of 
advection is of a secondary importance, namely the laminar flow through a smooth expansion 
channel proposed by Roache.2 

The announcement of the meeting, together with full details of the test case, was sent in advance 
to a large number of researchers. More than fifteen groups submitted results, which were discussed 
at the workshop-session of the Fifth IAHR Meeting, held in Rome on 24-25 May 1982 at the 
Facolta’ di Ingegneria dell’universita’ La Sapienza. 

The purpose of this paper is to report the outcome of the comparison among the various results 
and to record the conclusions which emerged from the discussion. It is hoped that this information 
will prove valuable to the large number of researchers involved in the solution of (laminar) flows in 
complex geometries. 

TEST PROBLEM 

The plane channel flow proposed by Roache2 was chosen as the test problem for the workshop. 
The geometry, depicted in Figure 1, depends on the value of the Reynolds number, Re: the channel 
becomes longer and straighter as Re increases and, for Re >> 1, a quasi-self-similar solution is 
obtained. 

The lower boundary (solid wall) of the channel is given by the following analytical expression: 

y ,  = [tanh(2 - 30x/Re) - tanh(2)]/2, (1) 

for 0 d x < xOut = Re/3; whereas the upper boundary (symmetry plane) is located at y ,  = 1. 
The inlet boundary conditions are given in terms of the Cartesian velocity components u, u, as 

t ’  
Symmetry plane (o,l) ~ Y,( x ) = l  (Re~3.1) 

Wall of the channel 
Figure 1. Geometry of the channel for Re = 10 

(Re 13, y, (Re1311 
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or, for the case of the stream function, as 

The standard no-slip, no-injection conditions are imposed at the wall (0 < x < x,,~, y = yl); 
symmetry is enforced at 0 < x < xOut, y = yu; the outlet boundary conditions have been left to the 
choice of each participant. 

Two flows were selected as mandatory cases, corresponding to the relatively small values of the 
Reynolds number Re = 10 and Re = 100; the former was chosen because of its rather distorted 
geometry (see Figure 1) and the latter to assess the dependence of the convergence rate of each 
method on Re. Smaller Reynolds numbers were not considered to avoid the major difficulty of 
providing appropriate inflow and outflow conditions. However, a third optional case character- 
ized by a more significant advection, namely Re = 100 flow inside the Re = 10 channel, was also 
proposed. A 2 1 x 21 gridpoints finite difference mesh, or an equivalent finite element discretization, 
was prescribed in order to allow for a meaningful comparison among the various solutions. 

For all flow cases each participant was asked to provide his numerical results in terms of both the 
vorticity (0) and the pressure ( p )  distributions along the wall of the channel in order to not privilege 
the use of the primitive (u, u, p )  or non-primitive ($, o) variables. The total CPU time required to get 
a converged solution was also requested, to asses the efficiency of the various numerical methods. 
The CPU time was made somewhat computer-independent by normalizing it with respect to that 
required to run a standard Fortran code provided by the organizers of the workshop, P. Orlandi, 
A. Di Carlo and P. Mele. 

RESULTS AND DISCUSSION 

Before comparing the various solutions to the test case, it seems appropriate to report briefly on the 
principal points which emerged during the workshop. 

The major debate among the participant-groups concerned the questionable validity of the inlet 
boundary conditions, emphasized by the Re = 10 results. Fully developed Poiseuille flow 
conditions have been prescribed at the inlet, in spite of the non-zero slope of the wall of the channel 
at x=O. As a consequence, there is a singular behaviour at this point,3 which shows up as a 
disturbed wall pressure distribution in many of the numerical solutions. Such a singularity has 
been investigated by Cliffe et ~ l . , ~  who also conducted a mesh refinement study to obtain a grid- 
independent solution. The value of the pressure field in incompressible flows being defined up to an 
arbitrary additive constant, it was decided to fix the value of the pressure equal to zero on the wall 
at x = xOut/2. In this way, the various pressure distribution results are considered to be more 
meaningful and can be compared more easily. In fact, the usual choice of the inlet or outlet as the 
reference pressure point could have caused difficulties because of either the presence of the 
singularity at the inlet or the arbitrariness of the boundary conditions at the outlet. 

Some of the participants felt that the problem under investigation was ‘too easy’ and therefore 
not suitable to assess the capability of each code to compute flows in complex geometries. Such an 
opinion, however, cannot be agreed upon a posteriori, after the analysis of the various results. 

Since a satisfactory analysis and comparison of the results was not completed at the workshop, 
at its end it was decided that a paper should be written to report and compare the various solutions. 
The optional flow case having been solved only by a very few groups, it was agreed to devote the 
paper to the two compulsory cases only. In order to provide the authors of the paper with all of the 
necessary information, each group was asked to fill in a form requiring the names of the authors 
and their affiliations, a short summary of the method employed, the main reference describing it in 
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detail and the computed wall vorticity and pressure at 21 equally spaced x/xoUl locations. 
Fifteen groups returned the forms to the organizers. Table I indicates the names of the first 

author of the group and the affiliations, the numerical formulation and the type of computer and, 
finally, a label composed by the initials of all the authors, used to identify each group in the Tables 
summarizing the results. The descriptions and the references for each method, as received from the 
various contributors, are reported in the Appendix. 

Most participants submitted both the pressure and vorticity values for the cases Re = 10 and 
Re = 100. The numerical results are given in Tables 11-V. For the Re = 10 case the results have also 
been plotted in Figures 2 and 3 only to provide an immediate rough idea of their behaviour and 
spreading, and therefore the various curves are not identified. In the absence of an exact reference 
solution, the grid-independent results obtained by Cliffe et aL3 have been assumed as a benchmark. 
Such a solution has then been used to compute the average percentage errors E,,, and E ~ ,  defined 
according to the following relationships: 

where mi and pi are the vorticity and pressure at the aforementioned equally spaced points along 
the wall, computed by each group, and the subscript CJG refers to the benchmark (interpolated) 
solutions by Cliffe et aL3 It is noteworthy that the values at the gripoints x = 0 and x = xout have not 
been included in the definitions of E, and cp to reduce the influence of the singularity at the inlet and 
of the arbitrary outlet boundary conditions. For the case of E~ the (exact) value at x = x0,,/2 has 
also been excluded (see equation (5)). Finally, we would like to point out that E,,, has been defined so 
as to account mostly for the region around and inside the separation bubble. This is a rational and 
appropriate choice and therefore E, is a good quantity to judge the accuracy of the solutions for the 
present flow cases. 

The errors for each method are given in Table VI, which also contains the normalized CPU time 
and the minimum and outlet vorticity values. From the results in Tables 11-VI it clearly appears 
that: 

1. The validity of the solution by Cliffe et aL3 as an adequate benchmark is confirmed by its very 
good agreement with the results obtained by Schonauer using adaptive, comparably fine, 46 x 32 
and 41 x 62 meshes. In Table VI, in fact, Schonauer’s results appear as the most accurate ones, 
being characterized by values of E, as little as 1.74 and 0-44 for the Re = 10 and the Re = 100 flow 
cases, respectively. The use of two completely different formulations by these two groups, who 
solve the u, v, p equations by finite elements (CJG) and the u, v, o equations by finite differences (S) 
provides further evidence of the high accuracy of both solutions. 

2. The WA2 solution, using a Cartesian co-ordinate system which requires interpolation to 
impose the wall boundary conditions, is clearly inadequate to compute the present flows in 
complex geometries; for the Re = 100 flow case the WA2 solution in Table I11 is seen to ignore 
completely the separation phenomenon and has a very large E, = 135.48 per cent. 

3. In spite of the presumed simplicity of the flows to be computed, many solutions are 
characterized by large values of E, and E ~ ;  large scatterings for both the pressure and vorticity 
distributions can also be seen easily in Figures 2 and 3. 

4. The E ,  values are much greater than the E ~ S ;  this is obvious because very large relative errors 
for o are probable near the separation and the reattachment points if the length and the position of 
the separation region are not computed very accurately. Also, most of the computations use the 
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Figure 2. Vorticity distributions at the wall for Re = 10 
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primitive variables, so that the values of the vorticity at the wall are not necessarily a direct 
indication of the accuracy of the solution method. 

5. Nothing definite can be said about the superior accuracy of finite elements or finite 
differences. In particular, two groups (MN and QN) have obtained solutions using the same 
variables on the same mesh but different discretization (FD and FE, respectively) obtaining 
comparable accuracy. 

6. The mesh distribution employed in the calculations appears to be very important to model 
the separation region correctly. For example, the FD and FE solutions of MN and QN, using a 
proper stretching in the direction normal to the wall, are both satisfactory in spite of the overall 
coarseness of the mesh. A knowledge of the grid distributions used by the various participant 
groups could thus explain many of the discrepancies observed in the various solutions. 

7. The CPU times required by the various methods vary significantly and certainly more than 
one could have anticipated. .Besides the obvious differences among the numerical techniques 
employed by the participants (e.g. steady state vs. time dependent formulations), an important 
reason for such a result is believed to be that some of the solutions have been obtained by means of 
general purpose industrial packages, whereas others by ‘academic codes’ prepared just for the 
present problem. 

8. For the case of a relatively simple geometry, no benefits are obtained using differential rather 
than algebraic or analytical co-ordinate transformations, in spite of the great difference in their 
computational costs. As a matter of fact, the CPU time required to generate the grid by solving a 
system of PDEs can be of the same order of that required to compute the flow field. 
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APPENDIX 

B. J. Alfrink, Delft Hydraulics Laboratory, the Netherlands; presently at ENR Computer Services 
for Technology, Petten, the Netherlands. 

ODYSSEE is based on the use of curvilinear finite differences in space and of fractional steps in 
time. Convective and diffusive transports are solved separately. 

The convective transports are treated by means of a third order explicit method of 
characteristics, which appears to be unconditionally stable. 

The diffusive transports are treated implicitly. The resulting system of algebraic equations is 
solved by means of a standard successive over-relaxation (SOR) iterative scheme. Neumann-type 
boundary conditions are eliminated beforehand in order to aid convergence. 

The solution of the Neumann problem for the pressure requires careful attention. Taking the 
pressure nodes staggered in space, the compatibility condition is satisfied exactly. As for the 
diffusive transports the elliptic operator yields again a nine point molecule. The solution of the 
resulting system of algebraic equations has now been obtained by means of Gaussian elimination 
with partial pivoting. 

See Reference 4. 

K. A. Cliffe, C. P. Jackson and A. C. Greenfield, AERE Harwell, U.K. 
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A finite element method is used to solve the Navier-Stokes equations in the primitive variables. 
The space W,,(Q) is generated by nine-node isoparametric elements with biquadratic interpolation, 
The space Qh(Q) is generated by piecewise linear interpolation on the same elements; the 
interpolation is discontinuous across element boundaries. A Newton-Raphson linearization 
scheme is used, and the linear system is solved using the frontal solution method. 

1. Demirovic and A. D. Gosman, Imperial College, London, U.K. 
The method uses a semi-strong conservation form of the Navier-Stokes equations, written in 

terms of contravariant physical velocity components. The solution domain is overlaid by an 
arbitrary non-orthogonal mesh with quadrilateral curvilinear control volumes. The governing 
equations are discretized in the finite-volume fashion using hybrid differencing for the fluxes. 

The presence of cross-derivatives pressure gradient and diffusion flux terms arising from the co- 
ordinate system non-orthogonality made the coefficient matrices nine-diagonal with the 
possibility of negative coefficients. The related problems have been solved to yield a stable solution 
procedure which operates in a manner similar to the SIMPLE algorithm, using iterative AD1 to 
solve the simultaneous equations. 

J. Goussebaile, J. P. Benque and P. L. Viollet, Laboratoire National d’Hydraulique, Chatou, 
France. 

To deal with general complex geometries non-orthogonal boundary fitted co-ordinates are used 
which allow an arbitrary choice of the co-ordinate lines. In fact we do not solve the equations in the 
real domain R (with boundary r) but we transform this physical domain, which is in the plane (x, y), 
into a numerical domain a, in a plane (5 ,  q) with a boundary f, which is made only of vertical and 
horizontal lines. Then in the Navier-Stokes Boussinesq equations we transform the physical 
variables (x, y) into the computational variables ( 5 ,  q )  and solve the u, u, T equations in the 
transformed domain using a classical finite difference scheme. Although we could impose by hand 
point after point the discretized correspondence between i2 and a, the use of some automatic 
process such as the Thompson method is preferred. 

Using a first order approximation in time, we use a fractional step algorithm and compute 
auxiliary fields, the solutions of elementary problems: first convection, then diffusion, finally 
continuity, which are of different nature (hyperbolic, parabolic, elliptic). The convection is treated 
explicitly by a method of characteristics; the diffusion is treated fully implicitly. For each step, the 
initial values are given by the result of the previous step and the boundary conditions are estimated 
using the boundary conditions on the real fields u, u and T. 

See Reference 3. 

A report is in preparation. 

See References 5-7. 

M. Grandotto, Commissariat a l’energie atomique, Cadarache B. P. N. 1, 13115 Saint Paul Lez 
Durance, France. 

Method: standard Galerkin finite element method with penalization. 
Elements: 
1. Q1-QO: 4 nodes, piecewise constant pressure, bilinear velocity 
2. Q2-P1: 9 nodes, discontinuous linear pressure, biquadratic velocity. 

Note: underparametric elements are used, i.e. straight sides and intermediate nodes located at the 
middle of sides. 

Programm: NASTHY 
Computer: CRAY-1. 
See References 8 and 9. 
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G. Guj and B. Favini, Dipartimento di Meccanica ed Aeronautica, Universita di Roma 'La 
Sapienza', Italy. 

The solutions of the test problems 1 and 2 have been obtained using a computer code, named 
MAFEL3, which was developed in 1979 for the simulation of viscous laminar flows of an 
incompressible fluid in complex geometries. The Navier-Stokes equations are solved in terms of 
the primitive variables in the transformed computational domain using an extension of the MAC 
scheme (originally developed for rectangular grids) to curvilinear grids. Therefore the contrava- 
riant velocity components, located at cell midsides, are assumed as variables. The momentum 
equations are linearized updating the convective term, and the steady state solution is reached by 
means of an explicit time-integration technique. The artificial compressibility method of Chorin is 
used to obtain the pressure field from the continuity equation after every time-step. The spatial 
derivatives are discretized by standard second-order-accurate finite differences. The body-fitted 
curvilinear mesh is generated numerically solving a quasi-linear elliptic system in the transformed 
plane. 

See Reference 10. 

A. G. Hutton, Central Electricity Generating Board, Berkeley Nuclear Labs, Berkeley, Glos, U.K. 
The Navier-Stokes equations were solved by the standard Galerkin finite element method with 

continuity incorporated by the method of Lagrange multipliers. 
Two types of eight-noded, isoparametric, quadrilateral elements were used; 

(a) the well known serendipity quadratic velocity/linear pressure element (type 2) 
(b) boundary elements (type 3) distinguished from type 2 by the incorporation of the normal 

derivatives of velocity as additional nodal variables at the boundary nodes. 

Type 3 elements were laid along the symmetry line and wall boundaries in such a way that element 
edges intersected these boundaries at right angles. 

The outflow boundary conditions were u = 0 and p - (du/dx)/Re = 0. 
The equation system was solved using Newton-Raphson iteration coupled with a direct frontal 

solver for the linear systems within each iteration. 
The wall vorticity was evaluated at a node as o = au cos 8 - du sin 8, where 8 is the angle 

between the wall normal at the node and the x co-ordinate direction and du, do are the nodal values 
of the normal derivatives of the x and y velocity components (explicitly provided by the solution). 

See Reference 1 1. 

D. Khaletzky, NEYRPIC, Greenoble, France. 
A finite element method to solve the Navier-Stokes equations in primitive variables. 
The method is time-marching with explicit advection and implicit diffusion. The explicit 

advection step uses the method of characteristics, with the aid of the shape functions of the 
elements. After determining u* and u* in this way, the Navier-Stokes equations read 

Pressure is determined by solving the Poisson equation 

See Reference 12. 

Latrobe, Delapierre, Centre d'etudes nucleaires de Grenoble, France. 
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The test problems have been solved by the computer code REYCUR, which is derived from 
WAPITI, presented at a previous IAHR meeting. 

REYCUR, like WAPITI, uses a finite volume formulation, a semi-implicit type of discretization 
and solves at each time step a linear system for the pressure field. The two components of velocity 
are evaluated on a staggered grid after resolution of the Poisson-like pressure equation. 

Another difference between REYCUR and WAPITI is related to the linear system solution 
method. In WAPITI, the matrix is factorized once and for all by the Cholesky method. This 
method is quite efficient and fast because, for incompressible flows, the matrix never has to be 
refactorized during the computed transient. But, although the matrix is banded and full advantage 
is taken of its structure, the computer storage needed by complete Cholesky factorization may 
be quite large. Consequently, REYCUR uses a partial Cholesky factorization coupled with a 
conjugate gradient iterative method. 

The curvilinear co-ordinate system is generated by the code GENOR which enables us to 
generate such a system for arbitrary 2D geometries. 

See References 13 and 14. 

V. Magi and M. Napolitano, Istituto di Macchine, Universita, di Bari, Italy. 
The vorticity-stream-function Navier-Stokes equations are considered in a general curvilinear 

co-ordinate system, which maps an arbitrary two-dimensional domain in the physical plane into 
a rectangle in the computational plane. In the present applications an orthogonal mesh is 
generated by a simple algebraic method. The stream function equation is parabolized in time 
by means of a relaxation-like time derivative and the steady state solution is obtained by a 
time-marching two-sweep AD1 method, which requires to solve only linear two-by-two block- 
tridiagonal systems. The difference equations are written in incremental form; windward 
differences are used for the incremental variables, for stability, whereas central differences 
approximate the non-incremental terms, for accuracy. In this way, at convergence, the solution 
is free of numerical viscosity and is second-order accurate. 

See References 15 and 16. 

L. Quartapelle, Istituto di Fisica, Pditecnico di Milano, Italy. 
M. Napolitano, Istituto di Macchine, Universita’ di Bari, Italy. 

The method solves the time dependent vorticity-stream-function Navier-Stokes equations by 
a split formulation. The vorticity equation is supplemented by its proper integral conditions and 
the transient solution is obtained by solving a cascade of elliptic problems (by means of the 
Cholesky decomposition method). The equations are discretized by a finite element method 
using bilinear quadrilateral elements. 

The grid generated by Magi and Napolitano has been employed in conjunction with the 
standard isoparametric transformation technique. 

See Reference 17. 

J. D. Porter, J. Sykes and N. S. Wilkes, AERE Harwell, U.K. 
An existing finite difference computer program for predicting turbulent flows in rectangular 

geometries has been generalized to complex geometries by means of the co-ordinate transfor- 
mation method. The advantages of the method have previously been demonstrated by solving 
an equation for a scalar field convected around a cavity. In Reference 18 the procedure for 
solving the laminar flow equations is outlined and some results are given for a test problem. 

A. K. Rasgoti, A. S. Veritas Research, Norway; presently at  Universitat Karlsruhe, Germany. 
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Calculations for the test problems have been carried out by solving with finite differences the 
Navier-Stokes equations in orthogonal curvilinear co-ordinates. The orthogonal curvilinear 
co-ordinate system, i.e. the numerical grid, is generated by solving the Laplace equations for the 
physical co-ordinates by central differencing. Necessary details of this method can be seen in 
References 19 and 20. The momentum and continuity equations are then solved on the cuvilinear 
numerical grid using control volume integration and hybrid differencing similar to that used in 
the TEACH code. The additional source terms appearing in the momentum equations as a result 
of the co-ordinate transformations were introduced after 60 iterations. Two hundred and fifty 
iterations were necessary to converge fluid flow solution for problems 1 and 2 and 300 iterations 
were required for the problem 3. Three hundred iterations were, however, performed for all the 
cases. Further details of the methods employed and their application can be seen in References 21 
and 22. 

W. Schonauer, Rechenrentrum der Universitat Karlsruhe, W. Germany. 
Self-adaptive difference method, made available in the SLDGL general purpose program 

package. Transformation of the domain to a rectangular domain, which resulted in a non- 
orthogonal co-ordinate transformation: x remains, y --, q by y = y l ( x )  + q(1 - y l ( x ) ) .  Solution in 
a velocity-vorticity formulation. Treatment of the mixed derivative in o by an auxiliary variable. 

The results for Re = 10 were computed on a self-adapted 46 x 32 grid. It was not possible to 
get a result for Re = 100 from that initial solution. So, we computed intermediate solutions with 
grid adaptation for Re = 20, 50. The final solution for Re = 100 is computed on a 41 x 62 grid. 

See Reference 23. 

A. Wada, Central Research Institute of Electric Power Industry, Japan. 
K. Adachi, Mitsubishi Research Institute, Japan. 

method is composed of the following two steps: 
A method by co-ordinate transformation using complex analytical functions was used. This 

1. Variable transformation. 
(a) The object domain is mapped conformally into simple domains, such as a rectangular 

domain, by the use of complex analytical functions. Taking advantage of the fact that the 
real part and imaginary part of complex analytical functions are harmonic functions and 
conjugate with each other, these complex analytical functions can be obtained 
numerically. 

(b) It is necessary to determine beforehand the differential equation system after co-ordinate 
transformation. In the Navier-Stokes equation system, no large variation of format takes 
place in the co-ordinate transformation by complex analytical functions, but as the 
differentiation of inverse functions of transformed functions appears, it is necessary to 
obtain beforehand the differentiation of inverse functions of complex analytical functions. 

2. Difference method. 
The differential equation system of the domain after variable transformation and thereon is 

put to difference calculation to carry out numerical computation. As the configuration of the 
object domain is simplified by variable transformation, handling of the boundary becomes easy. 
Moreover, as the format of the difference equation does not undergo a major change, owing to 
co-ordinate transformation, the existing high-precision difference equation against the Navier- 
Stokes equation can easily be applied. 
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